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On trapped waves over a continental shelf 

By JOHN M. HUTHNANCE 
Department of Oceanography, University of Liverpool 

(Received 20 August 1974) 

Any straight continental shelf of monotonic depth profile is shown to have as its 
entire complement of barotropic trapped modes (i) an infinite discrete set of 
‘continental-shelf waves’, (ii) a single ‘Kelvin wave’, and (iii) an infinite discrete 
set of ‘edge waves’. The decomposition of energy density and fluxes into modal 
constituents is discussed. 

1. Introduction 
In an unbounded ocean of uniform depth, the only free barotropic wave modes 

with horizontal scales much greater than the depth are plane gravity waves of 
frequency a greater than the Coriolis frequency f. However, the presence of a 
coastline and non-uniform depth along a continental shelf introduces the follow- 
ing theoretical possibilities. 

(i) AKelvin wave. This has no offshore nodes, and in its simplest form in water 
of uniform depth against a straight coast (Lamb 1932, $208) progresses with the 
speed of long gravity waves, decaying seawards exponentially. 

(ii) Edge waves. This term will be used here for the modes of frequency 
greater than f, and offshore wavenumbers 1 ,2 ,  . . ., found by Eckart (1951), which 
depend on the offshore increase in water depth. 

(iii) Continental-shelf waves. Discovered by Robinson (1964) for a narrow 
uniformly sloping model shelf, these modes have offshore wavenumbers 1, 2 , .  .., 
frequencies a less than f and progress along the shelf in a cyclonic sense about the 
deep sea. 

There is now considerable observational evidence for the existence of continen- 
tal-shelf and edge waves trapped along the coast, beginning (for shelf waves) 
with the measurements of Hamon (1962) around the Australian coast. A fuller 
list is given in Huthnance (1973). Laboratory experiments (Caldwell, Cutchin & 
Longuet-Higgins 1972; Bowen & Inman 1971) confirm the existence of such 
waves. 

There is also an abundance of specific theoretical analyses (see Huthnance 
1973) based on particular depth profiles and various assumptions, especially of a 
narrow shelf and (prompted by applications with atmospheric forcing) low 
frequencies (a < f) in the case of continental-shelf waves. A principal aim of the 
present study is to determine to what extent typical conclusions in specific 
cases (e.g. that shelf waves always travel with land on their right in the northern 
hemisphere) apply to arbitrary monotonic profiles and the full range of para- 
meters, and hence to sketch a figure showing the distribution of all trapped modes 
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analogous t o  that obtained numerically by Munk, Snodgrass & Wimbush 
(1970, figure 6) for a step-shelf model. 

The difficulty with this problem, which has led to the wide variety of solutions 
for particular cases and under special assumptions, is the fact that the wave 
frequency, which one generally wishes to regard as the eigenvalue of the system 
of equations determining trapped modes, appears in two terms (with powers 
- 1 and 2 )  in the differential equation and also in the boundary conditions (see 
equations (2.3) and (3.4) below). Alternatively, for tidally forced problems the 
frequency is fixed and we should like to regard the longshore wavenumber as the 
eigenvalue. This also appears in two terms (with powers 1 and 2 )  in the differential 
equation as well as in the boundary conditions. 

The equations of motion and associated eigenvalue problem for trapped modes 
are set out in $ 2 .  Section 3 demonstrates the existence of dispersion relations 
uniquely determining the frequencies of an infinite discrete set of shelf waves, 
a single Kelvin wave and an infinite discrete set of edge waves. The involved 
appearance of the eigenvalue (the frequency cr) in the problem therefore does not 
introduce any variations in the qualitative distribution of eigenmodes. However, 
the use of special examples in $4 demonstrates that the magnitude and even the 
sense of the group velocity are highly profile dependent, with few general state- 
ments possible. This has the consequence that for a tide-related problem, where 
the frequency is specified, there is an unknown (i.e. profile-dependent) number of 
eigenvalues (i.e. longshore wavenumbers) and corresponding modes. 

The nonlinear appearance of the eigenvalue in the differential equation and 
boundary conditions also leads to orthogonality relations between modes whose 
form is mode dependent and whose interpretation is not clear. Their connexion 
with energy flux relations is discussed in $ 5 ,  where it is shown that only a certain 
combination of the energy density and flux can be separated into modal con- 
stituents. 

2. Equations 
We use the ‘long-wave ’ equations governing barotropic ‘hydrostatic ’ motion 

of an inviscid, homogeneous, incompressible sea (with surface elevation 5 above 
the equilibrium leveI z = 0) overlying the sea floor z = - h(x). Thus 

u,+kAu = -05, (2.1) 

0yt + v . [hu] = 0, (2.2) 

where u = (u,  v) is the horizontal velocity vector, k the unit vector in the direction 
of z increasing (vertically up) and V is the horizontal gradient operator (az, ag). 
x = (x,y) are co-ordinates in the horizontal plane; we have made the ‘f-plane’ 
approximation, taking f to be uniform and neglecting the earth’s curvature. The 
quantities u, t ,  x, < and h have been non-dimensionalized on the scales U ,  f - l ,  
L, f ULlg and H respectively, and the non-dimensional parameter D2 = f zL21gH 
compares the shelf-breadth scale L with a Rossby radius of deformation (gH)*/f 
for barotropic motion. 

We shall be primarily concerned with a straight shelf, coastline z = 0, for 
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which the depth his independent of the longshore co-ordinate y and h(x) increases 
monotonically to 1 as 3: increases towards the deep sea. For natural modes of the 
form u(z) exp i(ky + crt), etc., (2.1) enables expression of (u, v) in terms of <, which 
by ( 2 . 2 )  satisfies 

(hc) ' -K<= 0 (0 < 5 < a), K = - I c ~ ~ - ' h ' + k ~ h + D ~ ( l - ~ ~ ) ,  (2.3) 

where a prime indicates dldx. The boundary conditions hu -+ 0 (x + 0) and < -+ 0 
(x --f 00) for trapped waves become 

h(<'+ko-l<) 3 0 (x-+ O), 

< 3 0  (5300). 

(2.4) 

(3.5) 

Equations (2.3)-( 2.5)  form the eigenvalue problem determining the existence 
of trapped waves. For a given profile shape h, there are three non-dimensional 
parameters, D, cr and k, representing shelf breadth, mode frequency and long- 
shore wavenumber respectively. The system is of conventional Sturm-Liouville 
form only if we regard D2 as the eigenvalue, with cr and k given. However, in any 
real context we should normally regard the shelf width, and hence D2, as given, 
and seek either cr or k as an eigenvalue. 

For definiteness, we assume,f > 0, corresponding to the Northern Hemisphere, 
and cr > 0 by convention. Then k > 0 corresponds to propagation to the left as 
viewed from the deep sea (i.e. cyclonically about the deep sea). 

3. The set of trapped modes 
Noting that all coefficients in (2 .3)-(2.5)  are real, we assume without loss of 

generality in the following that C is real. 
All studies of continental-shelf waves have concluded that (in the Northern 

Hemisphere) they always progress to the left as viewed from the deep sea. 
Longuet-Higgins (1968) proved this result for double Kelvin waves over any 
monotonic profile, and we now show in the present context the following. 

(a) Any trapped mode of frequency cr < I (the inertial frequency) propagates 
cyclonically relative to the deep sea (i.e. k > 0). 

Proof./om <(2.3)dxyields, after integration by parts and use of (2.4) and ( 2 . 5 ) ,  

ka-'J = Il + E212, 
where 

and 

Hence k > 0. 
We now suppose (for analytical purposes only) that cr and k are given (but 

arbitrary). Then standard Sturm-Liouville theory (Hille 3 969, chap. 8) implies 
that there is a discrete sequence of unique eigenvalues - Ei (possibly absent) 
< - E; < . . . < - Ek corresponding to eigensolutions of (2.3) with 0,1,2,  . . ., n 

nodes (together with a continuum of untrapped modes in - E2 > k2) .  The values 
14-2 
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E: depend continuously on k and c except at  cr = 0. In  other words, we have in 
U, k,  D2 space a discrete set of continuous (except at  c = 0, 1) non-intersecting 
sheets D2(r ,  k), each corresponding to a particular mode number. The physical 
basis of (2.3)-(2.5) restricts our attention to t~ > 0, D2 > 0 (although this renders 
the set of eigenfunctions mathematically incomplete; Lindzen 1966). According 
to (a ) ,  none of the sheets enters k < 0, (T < 1 within our restricted space. 

We now confine our attention to one such sheet and suppose k given, so that 
we consider the form of the function D2(a) for a given mode. It is shown in appen- 
dix A that 

(b)  D2 i s  a monotonic decreasing function of g2. 

This is perhaps the most significant result of this section, since it permits us 
to invert the function D2(a)  on either side of = 1. Thus, for each mode, the 
sheet in (T, k,  D2 space represents a unique function a(k,  D2).  This function may 
not be defined over the whole range of k and positive D2; for example, the sheets 
corresponding to continental-shelf waves do not extend into k < 0. However, the 
uniqueness does imply the following for given k and D2. 

( c )  In  r < 1 (if k > 0), there is  a discrete sequence of unique modes with normal- 
to-shore wavenumbers 0 (possibly absent), 1, 2, . . . and corresponding unique fre- 
quencies uo > crl > v2 > . . . . I n  CT > 1, there is  a discrete sequence of unique modes 
with normal-to-shore wavenumbers 0 (possibly absent), 1,2,  . . . and corresponding 
unique frequencies u,, < a; < v2 < ... . 

On physical grounds, and by analogy with other physical systems, we should 
like to regard u as the eigenvalue of the problem, despite its unorthodox appear- 
ance in (2.3)-(2.5). Although the orthogonality relations between the correspond- 
ing eigenfunctions remain unsatisfactory, and there is certainly no guarantee 
that the eigenfunctions form a complete set, ( c )  implies that this is a reasonable 
point of view. This appears to be simply good fortune; the form of (2.3)-(2.5) 
suggests that it might have been quite possible for (say) three continental-shelf 
waves of different frequencies, but all of wavenumber 2, to occur. 

We consider only the quadrant D2 > 0, CT > 0 and (b)  holds, so that, taking the 
two sides of G = 1 separately, the sheets are ‘stacked’ in the same order whether 
regarded as functions D2(a) or (t(D2). This justifies the inequalities in (c), and also 
implies that all modes exist up to the highest order present. However, we must 
retain the possibility of only a finite number of modes. In  fact, the solutions 5 of 
(2.3) for large x, where h = 1 and h’ = 0, can exhibit exponential decay (as 
required for trapping) rather than sinusoidal behaviour (which implies energy 
fluxes far from the coast) only if 

(3.3) 

This condition provides a high-frequency limit on the number of modes in CT > 1 
for given k and D2. There is a continuum of Poincark waves at higher frequencies. 
These are not trapped [violating ( 2 . 5 ) ] ,  and merely represent that combination 
of the two linearly independent solutions of (2.3) which satisfies (2.4). 

The restriction (3.3) eases for large longshore wavenumbers k .  Fixing D and 
choosing (r = Ikl/D, which satisfies (3.3), we see that by choosing k sufficiently 
large we can cause I< in (2.3) to be arbitrarily large and negative in some non- 

c2 < 1 + k2/D2. 
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zero interval (xl, x 2 )  over the shelf where h < I - S < I. Standard oscillation 
theorems of Sturm-Liouville theory (Hille 1969) therefore imply arbitrarily large 
normal-t'o-shelf wavenumbers. That is, 

( d )  The sequence of edge-wave modes [u > 1 in (c)]  extends to arbitrarily large 
normal-to-shelf u?avenumbers !or suficiently large longshore wavenumbers k .  

However, for any given k ,  the oscillation theorems imply only a finite number 
of modes. The greatest wavenumber, given k and D2, may be found in principle 
by subtracting unity from the number of zero-crossings of the solution of (2.3) 
with (3.4) when u2 = I + k2/D2. There is a further guide. 

( e )  The number of edge-wave modes increases (decreases) with O2 for k > 0 (k < 0). 
Proqf. We compare the numbers of zero-crossings of the solution of (2.3) with 

(2.4) when u2 = 1 + k2/D2 for two values DY < Dg of D2. Using a variant of 
Prufer's technique (Hille 1969), let q = h<'/<: at zeros of 5, q tends to -00 and 
recommences decreasing from +a. We have 

q' = -ah'- q2/h - k2( 1 - h ) ,  q(0) = -ah. 

where a = k(1 + k2/D2)-S: a l z  a2 as k 5  0. Initially, q1 2 q2, and the curves 
ql(x) and q2(x) never cross since q1 = q2 implies q; 5 qi. Thus, if k > 0, q2 decreases 
through - 00 (corresponding to a zero of <) a t  least as often as q,, and vice versa 
if k < 0. The result follows. 

For given k and D2 we can also cause Ii in (2.3) to be arbitrarily large and 
negative over some non-zero interval (x1,x2) (in which h' 2 6 > 0) through the 
term - kh'/a, by taking u sufficiently small. The oscillation theorems then imply 
the following. 

(f) The sequence of shew-wave modes [a < 1 in (c)] extends to all normal-to-shelf 
wavenumbers for  all k and D2. 

We now turn to the modes of normal-to-shelf wavenumber zero, whose 
existence is yet to be determined. The analysis is carried out in appendix B, 
with results which may be summarized as follows. 

(9)  For given k and D2, there is a unique Kelvin wave. In k > 0, the frequency a 
decreases smoothly  rough 1 as D2 increases through 

J O  

(h)  For given Ikl and D2, an  edge wave or Kelvin wave with k < 0 hus a greater 

Proof. Let the frequencies of the modes with k z  0 be a, and a2, 
frequency IT than the corresponding mode with k > 0. 

= k lkl (1  +k2/D2)-4,  q = hq/<, 
where, as in ( e ) ,  

Since a, > a2, q1 (corresponding to  a,) is less than q2 a t  x = 0, and q1 = q2 implies 
that  q; < q;, so that q1 and q2 cannot cross or meet. Hence, after an equal number 
of nodes of < (where q decreases to -a and reappears a t  +00 with negative 
gradient) q2 > ql, that  is 

q' -ah'- q 2 / h - k 2 ( l - h ) ,  q(0)  = -ah. 

- [k2 + D2(l  - u3]4 = q2(00) > q,(co) = - [k2 + D2(1 - ~7'314, i.e. u2 > u,. 
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U 

1 

0 2  

FIGURE 1. A typical dispersion relation ~ ( k ,  D2)  for given k.  Mode numbers equal the 
numbers of offshore nodes. 

a = 3k3 /omhe-Ph2dx.  

The results of this section enable us to sketch (T as a function of D2 for 
given k > 0 (figure 1). The qualitative features are independent of k except that 
for k < 0 there are no modes in v < 1 and the number of edge waves decreases 
with increasing D2. 

4. Group velocity 
The results of 3 3 essentially demonstrate the distribution of natural modes in 

the D2, v plane. While this has value in enabling a count of all relevant modes 
in many contexts, the nature of the frequency (T as a function of the longshore 
wavenumber k for any given mode is often of more physical interest. In  particular, 
the slope of this function (the group velocity cB) indicates the sense and speed of 
the expected energy propagation. For problems where the frequency is imposed 
externally, such as the forcing of waves over the shelf by the tides, we also 
need the form of this function to  determine the corresponding wavelengths 
for the natural modes, and whether (for example) a shelf wave with two off- 
shore nodes could have two corresponding wavelengths. Unfortunately, the 
function ( ~ ( k )  for given D2 is strongly profile dependent, and we have only three 
general results. 

( i )  If k > 0, the number of edge-wave modes increases with k .  
The proof is essentially the same as for ( e ) .  
(j) If k < 0, then cg < 0, i.e. the phase and group velocities are in the same sense. 
Proof. We first recall that a given mode defines a dispersion relation 

(T = ~ ( k ,  D2) ,  
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so that 

Since Bcr/iiD2 < 0 [result (b)], the group velocity has the same sign as aD2/ak. 
If we allow a small change Sk in k (holding cr fixed), with corresponding small 
changes SD2 in D2 (i.e. 8232 in E2)  and Scin the eigenfunction <, then (3.1) yields, 
after use of (2.3)-(2.5), ;‘E”/ = J/u--3E13 

> 0, 
ak rr 1 2  

where 

1 BE2 < 
Thus 

and the result follows. 
( k )  I n  (T < l ( k  > 0 ) ,  (T < k/D.  A s  k -+ 0, cu - a / k  > 0. I’h’/h i s  bounded, all 

Proof. Define 
&elf waves have cg < 0 for some k. 

If p-(h) < p < p+(h), then p’ > 0 (see appendix B). If p J h )  < 0 for all h 6 1, 
thenp = Oleadstop’ > OsincepJh) > 0, sothatp(co) 2 0 > p-(l)sincep(O) = 0 
(coastal boundary condition), and no mode is possible (we requirep(co) = p-(I)). 
Hence, for some h, pJh) 2 0, i.e. (T 6 kD-lh4 < k/D.  

From (3.1), 
J / a  - 2k13 

[cf. proof of (j)] 

(1, + E212)/k - 2k13 
( I I + E 2 I 2 ) / ~ - -  2D2vI2 - - by (3.1) 

- cr/k as k -t 0 (which implies that cr -+ 0). 

For all modes with a node we require in (2.3) that h’ < 0 somewhere, hence 
somewhere kh‘/u > k2h for shelf waves (v2 < 1). Thus v < k-l sup (h’/h) + 0 
as k - t  a. If cr = uo a t  k = k,,, then cr < v0 eventually as k -+ co, and so, for some k,  

However, some condition playing the role of ‘h’lh bounded’ is necessary in 

(I) Shelf waves for the step-shelfprojile 

cu < 0. 

( k )  for the following reason. 

ulwuys have positive group velocity. (The phase velocity is positive, i.e. k > 0, by 
result ( a )  .) 

Proof. Owing to the concentration of the depth change at one point with this 
profile, the only shelf waves have just one offshore node: the dispersion relation is 

($- S)(l - ( T ~ )  = (-- 1 (1 +S)*) {k- (1  +:)’coth [k( I +:)’]], (4.1) 
0- 
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where X = D2/k2 and all factors in (4.1) are positive. Their behaviour as S in- 
creases from X, (for which (4.1) holds) is that 

F = A/a2-X decreases linearly to zero a t  S = A/li2. 

A S = - - A .  
8 2  

becomes zero before G = A -  0- (1 +:)'coth [k (1 +:)'I 
It may be verified that a2G/aX2 > 0, so that, a t  X,, 

I' 
< - ( l - a 2 )  

A/li2 - Xo 
a 
ax = - [LHS (4.1)]. 

[using (4.1)] 

Allowing a small change Gkin (4.1), holding li fixed, with a corresponding change 
G X .  vields ,u 

a r8-l - (1  + X ) * ]  (1 + x / A )  6k. G.X-[LHS(4.1)-RHS(4.1)] = a x  sinh2 [k( 1 + X/A)6] 

Thus [aX/2k] ,  > 0. Hence [aD2/ak], > 0 and c, > 0 [see proof of (j)]. 
It therefore appears that the vertical cliff in the step profile is responsible for 

anomalous frequencies li a t  high longshore wavenumbers k. Whereas 'most' 
profiles (for example, the Buchwald & Adams (1968) exponential profile) predict 
shelf-wave frequency maxima a t  an intermediate longshore wavenumber, cor- 
responding to vanishing group velocity, and a frequency decrease to zero a t  large 
longshore wavenumbers, the step-model frequency increases monotonically 
towards the limit (1 - A)/( 1 + A) a t  large longshore wavenumbers. We can under- 
stand the anomaly by noting that for shelf waves the restoring force depends 
essentially on the depth change 'seen' by the wave. For the step model (and others 
including a cliff), this remains large while the normal-to-shore extent of the wave 
decreases with the inverse longshore wavenumber, but in general for continuous 
depth profiles the depth change decreases correspondingly. The anonislous be- 
haviour of the step shelf givesit the advantage, when discussing modes a t  specified 
tidal frequencies, of assuring just one free shelf wave (Munk et al. 1970). 

Edge waves (a2 > 1) have generally been found in examples to have c, > 0 
when k > 0. However, this is not always the case. As a counterexample, we 
have the second-mode (two nodes) edge wave for the profile 

10-4, x < I, 
h = {  1,  x > 1,  

with D2 = 0.000174. The frequencies 8 = 1.5005 i 10-4 and 1.4998 corre- 
spond to k = 0.45 and 0.6. The existence of this example, extreme as it is, 
precludes the possibility of any qualitative results. In  the absence of rotation, 
of course, the group velocity for edge waves is always in the sense of phase propa- 
gation. 

Figure 2 is a typical but not universal sketch of the dispersion eurves a(k)  for 
given D2. 
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0 

k 

FIGURE 2.  A typical dispersion relation a(&, 02) for given 02. 
Mode numbers equal the numbers of offshore nodes. 

5. Energy flux and orthogonality 
For two trapped-mode solutions (el, k,, uI) and (c,, k,, u,) of (2.3) in a speci- 

fied context (h, D2) ,  /{c1(2.3), - <2(2.3)1)dx gives an orthogonality relation be- 
tween e, and c2. However, its form depends on the particular modes. If we require 
the modes to be members of the sequences (i) u specified, e.g. tidal forcing, 
(ii) k specified, e.g. shelves around an island for which the longshelf wavenumber 
is quantized, or (iii) phase velocity c specified, e.g. forcing by an atmospheric 
disturbance travelling along the shelf, then this relation simplifies somewhat. 
Only in case (iii), however, does it become mode independent. Thus it is possible 
to solve a problem of type (iii) for the amount of each mode cn generated by 
taking the scalar product 

(2.3) C,,dx 

of (3.3) (now inhomogeneous with forcing term F) with 6. The result is propor- 
tional to the constituent 

of F .  This has been carried out by Gill & Schumann (1 974) for the wind-stress 
forcing of continental-shelf waves. Such a procedure is not possible for problems 
of types (i) or (ii). 
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It, may be verified that the three orthogonality relations imply respectively 

(m,  i) The wave-energyfluz 
the following. 

9 z hgv dx 

separates into contributions from individual modes (with no contributions from 
interactions between modes). 

( m ,  ii) T h e  wave-energy density 

Q z ;Ioa (h(u2 + v2) + D2C2) dx, 

after nsera,ging along the shelf, separates into contributions from individual modes. 
(m,iii) cb+F sepurates into contributions from individual modes (N.B. the 

sign convention followed gives negative c = a / k  for propagation in the sense of 
y increasing). 

However, the Buchwald & Adams (1968) exponential profile provides an 
example showing that in the three cases no other linear combination of d and 9 
separates thus. 

Results (m)  may be summarized symbolically by 

where 6,,, and Fnm are the contributions to wave-energy density and flux 
respectively from interactions between different modes m and n, and 

1 0 incase(i), 1 c in case (iii), 
a - a'1f - co in case (ii), independently of rn, n, 'cy '  n - 
kn - kn, 

is merely a suggestive notation. This equation and the fact that the orthogonality 
relations and the energy conservation equation are both quadratic in the wave 
motion suggest that the two are related. 

To clarify this we consider the energy conservation relation 

Z q a t  + aslay = 0, 
which may be found from 

/0m{hu.(2.1)+6(3.2))dr. 

By considering the form of this when just two wave modes m and n are present 
with various amplitudes, we find 

ab?,,,lat + aF,,lay = 0. 

Since the solutions L& and <, of (2.3) are real, we may write 

gnl, = 8:nn sin $6, sin q5n +&&, cos $6m cos $6n, FTrdn = Fin?, cos #?,, cos $n, 
where 

Hence 
$6 = k y + d .  
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The two terms in braces must be separately zero, so that in the three cases we 
obtain respectively 

(i) (m, i) and Joa hu,u,dx = Iom (hwnv,, + D2<n<n,) dx, 

(ii) (m,ii) and 

(iii) (m,iii) and 

Thus the physical interpretations [principally results (m)] of the orthogonality 
relations between modes are simple consequences of energy conservation. We 
again emphasize that energy 8 and flux 9 can be separated into modal con- 
stituents only in the combinations 9, d and c 8 + 9  respectively for the cases 
(T, k and c specified. 

0 = Iom hu u,, dx. 

6. Conclusions 
The existence and uniqueness of the frequency g ( k ,  0 2 )  corresponding to each 

member of the full set of trapped modes over a continental shelf have been 
demonstrated. 

Continental-shelf waves have subinertial frequencies, which decrease (to zero) 
with increasing mode numbers corresponding to 1 ,  2, . . . offshore nodes (this is 
an infinite set). Phase propagation is always cyclonic relative to deep water, 
but the group velocity is always in the reverse sense for some (typically all) suffi- 
ciently large longshore wavenumbers (with the exception of profiles having un- 
bounded h’lh: the shelf wave for the step-shelf model never has reversed group 
velocity). The frequency also tends to zero for small longshore wavenumbers, SO 

that  there is a maximum frequency a t  which the group velocity vanishes. Since 

J - %(TI, [cf. proof of ( k ) ]  

by straightforward calculation (where 9- and & are time-averaged), wave energy 
a t  this frequency cannot propagate along the shelf. 

Edge waves may travel along the shelf in either direction. Apart from the 
fundamental mode (no offshore nodes) travelling cyclonically relative to deep 
water, which has subinertial frequencies a t  low wavenuinbers, 

F 
kr-l J - 2D2cr212 - 8 

- _  c =  

2k3IOm h e x  dx < 0 2 ,  

they have superinertial frequencies which increase with increasing normal-to-shore 
wavenumber ( = 0, 1, 3, ..., n(k, 0 2 ) )  up to a limit a2 = I +k2/D2, which is the 
trapping condition. An arbitrarily large number of modes occurs for sufficiently 
large longshore wavenumbers k. Edge waves travelling cyclonically relative to 
the deep water have lower frequencies than those travelling anticyclonically. 

It appears that the set of trapped modes divides naturally into two classes, 
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each associated with just one of the two restoring forces present (potential- 
vorticity conservation for continental-shelf waves and gravity for edge waves). 
The two combine in the fundamental edge wave travelling cyclonically about the 
deep sea; this exhibits a transition from one class to the other for increasing 
longshore wavenumbers. Apparently the two mechanisms interact only in 
making possible a reverse group velocity for cyclonically travelling edge waves. 

However, the presence of both mechanisms renders the orthogonality rela- 
tions between trapped modes mode-dependent, unless they are members of a 
sequence with a common value of the phase velocity a /k .  Only in this case may 
the generation of each mode in a forced oscillation problem be considered in- 
dependently. Nevertheless? the orthogonality relations remain essentially 
equivalent to the energy conservation equation in all cases. 

We have restricted attention to monotonic depth profiles. The principal effect of 
a reversal of the bottom slope is to introduce a further infinite set of modes with 
energy concentrated over the region of reversed slope. These are analogous to the 
continental-shelf waves already considered? but propagate in the opposite sense. 

The analysis of 5s 3-5 applies without substantial modification to systems 
with circular depth contours replacing the straight shelf. The Kelvin wave of 
azimuthal wavenumber n (an integer) crosses a = 1 at 

2n2(n- "J; h (:)2n+1e (islandofradiusr,: n > 0), 

2n2('-n'/:o(k) h-  (basinofradiusr,: n < 0). 

YO 

-2n-1 dr 
D2= [ " 

6 r0 

2n2(n- "J; h (:)2n+1e (islandofradiusr,: n > 0), 

2n2('-n'/:o(k) h-  (basinofradiusr,: n < 0). 

YO 

-2n-1 dr 
D2= [ " 

6 r0 

The basic result ( b )  may be shown to hold also (cf. appendix A) for an oceanic 
ridge, so that again in this case there follows a simple classification of trapped 
modes into double Kelvin waves conserving potential vorticity, travelling over 
the lateral slopes anticyclonically relative to the shallow region over the ridge 
(Longuet-Higgins 1968), and gravity waves (analogues to edge waves) trapped 
over the ridge with superinertial frequencies (Buchwald 1969). 

I\ly interest in shelf waves was stimulated by Professor M. S. Longuet-Higgins 
while I was in receipt of Natural Environment Research Council Research 
Studentship GT4/70/OF/4 at Cambridge, England. This work was completed 
a t  the Institute of Geophysics and Planetary Physics, University of California at  
San Diego and partially supported by the Atmospheric Sciences Section, National 
Science Foundation, N.S.F. Grant GA-35396X. 

Appendix A. Proof of (b) 
(i) O < a < I , k > O  

In  this case the existence of D2(a2) permits definition of E2(a2)  = (1  - a2) D2(a2),  
which is positive in the range of interest. If  we differentiate (3.1) with respect to 
( ~ 2  (holding k fixed), allowing variations in E2 and in the eigenfunction <, then 
we obtain, after use of (2.3)-(2.5), 

iiE2IaaZ = - k ~ / 2 v 3 1 ,  < 0. 
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Hence we can invert E2(Cr2) into a monotonically decreasing function a2 = F(E2) .  
Now 

dD2 d F-l (v2) I - P + E2 dF/dE2 

so that dD2/da2 < 0 if and only if F - E2dF/dE2 < I, i.e. the tangent to F(E2) 
interests the F axis below 1 (figure 3a).  

F F 

-=--= 
da2 dfT2 1 - fT2 (dP/dE2) (1 - fT2)2’ 

1 

0 r >  1 r <  1 0 

FIGURE 3. Sketches for appendix A. S is the straight line between (E2, F(E2)) and 
(0, 1) .  T is the tangent a t  (E2,  B’(E2)). 

We now show that the straight line between (E2, F(E2))  and (0,1) is always 

Proof. Suppose that (E2-rE2S, F- S(F- 1)) is on the curve as 6 -+ 0, with 
above the curve for abscissae just less than E2, from which the result follows. 

(A 1) 

(A21 

corresponding eigenfunction x 
( h ~ ’ ) ’  - Lx = 0, L = - kh‘/[F - 6(F - l)]4 + k2h + E2 - rE26, 

h { ~ ’  + k[F - 6(F - 1 ) ] - $ ~ }  = 0 (X = 0), x 3 O (X + CO). 

Then 

gives, after using the boundary conditions (2.4), (2 .5 )  and (AZ), 

J+O(6)  (6-tO; i.e. x - t c ) .  
Substituting for P I 2  from (3.1) yields 

by the Cauchy-Schwarz inequality. 
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If r < 1, the greatest value of the left side of the inequality in the range 
0 < F < 1 is k and is attained at  F = I, not in F < 1.  Hence r > 1, i.e. the straight 
line is above the curve point ( E  - rEV, F - (F - 1 )  6) as required (figure 3 a ) .  

(ii) u > 1, k > 0 

The proof follows that of (i) verbatim as far as (A3), except that E‘ is negative 
and the point (E2 - rE26, F - 6(F - 1 ) )  has abscissa greater than E2. 

If r 3 1, the greatest value of the left side of ( A 3 )  in the range F 3 1 is k and 
is attained at  P = 1, not in F > 1. Hence Y < 1, i.e. the straight line is above the 
curve point ( E  - rE26, F - S(F - 1)) as required (figure 3 b ) .  

(iii) u > 1,  k < 0 

In  this case we have [cf. (i)] E2(a2) < 0 and dE2/do2 > 0. Hence 

dD2 d E2 (1 - v2) dE2/dv2+ E2 < o, -=--- 
dv2 an2 1 - u2 - (1  - 0.2)’ 

Appendix B. The existence of a Kelvin wave, (g) 
Let p = hg‘/c+ khlq; zeros of g correspond to singularities of p .  Kelvin-wave 

solutions g, having no offshore nodes, correspond to functionsp with a finite value 
everywhere. 

Equations (2 .3) - (2 .5)  become 

P’ = - (P-P+(h)) ( P - P - ( h ) ) / h  P(0)  = 09 P(W) = P-(1)2 

where 
pk(h) = h - +  k 2 + - ( l - v 2 ) ] ” ) .  0 2  [:[ h 

Thus p’ is negative unless p -  and p+ are real and p -  < p < p+ .  p can become 
infinite only by decreasing to - co and ‘reappearing’ with value -I- co and p‘  < 0.  

If we integrate the differential equation for p out from x = 0 ,  where p = 0,  
to S, the result p ( S )  depends continuously on the parameters k ,  u and D2 (pro- 
vided that p does not become infinite), as does p - ( l ) .  Hence if (for example) k 
and v are fixed and 

p ( X ; D 2  = D?) > p- ( l ;D2  = D?), p ( X ; D ’  = I);) < p- ( l ;D2  = 23;). 

then for some value Dt between 0; and Di, p ( X ;  D2 = Di) = p-( 1 ; D2 = D;). 
By taking X sufficiently large (if h(x) = 1 for all x 3 xo then X >, xo suffices) 
it follows that k, u and 0: correspond t o  a Kelvin wave ( p  being finite). This 
argument is the basis for demonstrating the existence of a Kelvin wave in all 
three cases below. 

For both k < 0 and k > 0 we adopt the convention of a positive square root in 
p ,  when this is real. Thus (if k < 0) p-(h)  < hk/u( < 0 )  < p+(h).  We vary cr 
(rather than D2 as above). Let ul = 1; then p+ = 0,  so that 

(i) k < 0 (v z 1 )  

p ( x )  = 0 > -2)k1  = p - ( l )  
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for all x. As g increases, p-(  1) increases. When a2 = a2, = 1 + k2/D2, 

p-(1)  = k/a,, p' = -- h 1 ( p - -  E ) 2 - k 2 ( l - h ) .  

Thus p' < 0 unless h = 1 and p = k /a ,  = p - ( i ) .  Hence, if a = g,, either p ( x )  
decreases through p-( 1) (as x increases) or p ( x )  3 p-( 1)  as x --f 00. In  the latter 
case, g = a2 corresponds to a Kelvin wave. I n  the former, we have 

p ( X ;  (r = a,) < p-(1)  

for sufficiently large X, and the conditions for establishing a Kelvin wave are 
met provided that we choose the smallest value a. > a, giving 

p ( X ;  0- = a,) = p-(1)  

(to avoid p decreasing to - co; we know this does not occur for CT near a1 = 1) .  

(ii) k > 0 

We vary 0 2 .  Given c2 > 1, if D2 = D: = 0, then p -  < 0 < p+,  so that p = 0 
implies that p' > 0 (for any h). Hence, for all x, p 2 p ( 0 )  = 0 > p - ( l ) .  If 

D2 = Dl = lc2/a2, then p-(h) > 0,  

so that p = 0 implies that p' < 0 (for any h). Hence (while p remains finite) 
p(x)  < p ( 0 )  = 0 < ~ ~ ( 1 ) .  The conditions for establishing a Kelvin wave are met 
provided that we choose the smallest value D, > D,. 

For g2 < 1 the demonstration is identical with that for g2 > 1 except that 

D: = k2 /v2 ,  Dt = 0. 

Thus (k > 0) we have a Kelvin wave in a2 2 1 for all D2 less than some upper 
limit where (T = 1 (since a decreases in DZ), and also in a2 < 1 for all D2 greater 
than some lower limit where a = 1. On (r = 1, we have the unique trapped-wave 
solution 5 = e - k x .  Regarded as a system with the three parameters k, a and 
E2 = D2(1 - u,), (2 .3) - (2 .5)  depends continuously on (T near (T = 1,  E2 = 0, 
implying unique Kelvin-wave modes adjacent to the (T = 1 solution. We must 
identify these with the unique modes already known in a2 1. Moreover, from 
(3.1) we have (see appendix A) 

with dD2/cla2 also continuous across (T = I .  
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